Deep Representation Learning with Part Loss for Person Re-Identification

نویسندگان

  • Hantao Yao
  • Shiliang Zhang
  • Yongdong Zhang
  • Jintao Li
  • Qi Tian
چکیده

Learning discriminative representations for unseen person images is critical for person Re-Identification (ReID). Most of current approaches learn deep representations in classification tasks, which essentially minimize the empirical classification risk on the training set. As shown in our experiments, such representations commonly focus on several body parts discriminative to the training set, rather than the entire human body. Inspired by the structural risk minimization principle in SVM, we revise the traditional deep representation learning procedure to minimize both the empirical classification risk and the representation learning risk. The representation learning risk is evaluated by the proposed part loss, which automatically generates several parts for an image, and computes the person classification loss on each part separately. Compared with traditional global classification loss, simultaneously considering multiple part loss enforces the deep network to focus on the entire human body and learn discriminative representations for different parts. Experimental results on three datasets, i.e., Market1501, CUHK03, VIPeR, show that our representation outperforms the existing deep representations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

Structured deep hashing with convolutional neural networks for fast person re-identification

Given a pedestrian image as a query, the purpose of person re-identification is to identify the correct match from a large collection of gallery images depicting the same person captured by disjoint camera views. The critical challenge is how to construct a robust yet discriminative feature representation to capture the compounded variations in pedestrian appearance. To this end, deep learning ...

متن کامل

Person re-identification with fusion of hand-crafted and deep pose-based body region features

Person re-identification (re-ID) aims to accurately retrieve a person from a large-scale database of images captured across multiple cameras. Existing works learn deep representations using a large training subset of unique persons. However, identifying unseen persons is critical for a good re-ID algorithm. Moreover, the misalignment between person crops to detection errors or pose variations l...

متن کامل

Semantics-Aware Deep Correspondence Structure Learning for Robust Person Re-Identification

In this paper, we propose an end-to-end deep correspondence structure learning (DCSL) approach to address the cross-camera person-matching problem in the person re-identification task. The proposed DCSL approach captures the intrinsic structural information on persons by learning a semanticsaware image representation based on convolutional neural networks, which adaptively learns discriminative...

متن کامل

Deep ranking model by large adaptive margin learning for person re-identification

Person re-identification aims to match images of the same person across disjoint camera views, which is a challenging problem in video surveillance. The major challenge of this task lies in how to preserve the similarity of the same person against large variations caused by complex backgrounds, mutual occlusions and different illuminations, while discriminating the different individuals. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.00798  شماره 

صفحات  -

تاریخ انتشار 2017